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Talk Overview
• Problem description

• General framework for integrating packing and pricing

• Packing models (Exact and Simulation based state definitions)

• Price acceptance model

• Results

• Conclusions and future work
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PROBLEM DESCRIPTION
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Problem description
Objective: derive a dynamic pricing policy that maximises the expected revenue 
from the sale of vehicle tickets on a ferry

• Constraint: Limited capacity which depends on packing efficiency

• Customers

– Arrive at random during the selling season (beginning 6 months before 
departure)

– Customer willingness-to-pay is dependent on time until departure and 
varies between vehicle types

– Vehicles vary in size



Selling Tickets

Start of 
selling 
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Departure
iDiscrete 
time

At most one 
customer arrival 
per time period



General framework for integrating packing and pricing
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Pricing 
algorithm

1. Dynamic 
programming

2. Approximate 
dynamic 
programming

Packing 
algorithm

1. 1D Bin Packing
2. 2D Packing 

Heuristic

Capacity model

States capturing the 
sold/remaining 
capacity



General framework for integrating packing and pricing
• Input	variables

– The	state	࢙ at	any	given	time	interval	captures	the	ferries	remaining	capacity	for	
vehicles.	The	key	question	is	how	to	define	࢙,	we	consider	exact	and	
approximate	approaches

– ᇱ࢙ denotes the new remaining capacity state after one sale whilst in state ࢙

– ሻ࢙ሺ࢚ࢂ denotes the ‘revenue-to-go’ or the expected future revenue if the state is 
࢙ at time ࢚

– ,࢚ࣅ denotes the probability that a customer with vehicle type  arrives at time 
࢚
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General framework for integrating packing and pricing
• Input functions

– Price acceptance function: ࢻ , , ࢚ returns the probability that a 
customer with vehicle type  will pay a price  at time ࢚

– Transition function: ࢌሺ࢙,  returns the remaining capacity capturing state	ሻ
ᇱ࢙ if a customer with vehicle type  purchases a ticket at a time when the state 
is ࢙ (derived from packing models) 
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General framework for integrating packing and pricing
• Dynamic pricing formulation

– The optimal dynamic pricing look-up-table policy can be derived by 
computing the Bellman equations by backwards recursion

– In each state at each time 3 events can occur

1. No customers arrive
2. A customer arrives but does not purchase a ticket
3. A customer arrives and purchases a ticket
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PACKING MODELS
Exact and Simulation-based state definitions
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Exact and Simulation based state definitions
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• 1‐d bin packing 
model (optimal lane 
parking)

• State=count of 
vehicles of each 
type

• 1‐dimension per 
vehicle type

• Tickets sold state 
definition

• 2‐d packing heuristic 
(ignores lanes)

• State=remaining deck area 
per deck region

• 1‐dimension per deck 
region

• Remaining space state 
definition

A

Exact Simulation based

݁ݐܽݐݏ ൌ 3,2,1,1,4 ݁ݐܽݐݏ ൌ ܣ ൌ 950.8, ݁ݑ݈ܽݒ	݊݅ݐ݅ݏ݊ܽݎݐ		 ൌ 26.2
݂ 3,2,1,1,4 , 0 ൌ 3,2,1,1,4  1,0,0,0,0 ൌ ሼ4,2,1,1,4ሽ ݂ 950.8, 0 ൌ 950.8 െ 26.2 ൌ 924.6

Transition functions    for one vehicle type 0 sale



Exact (1D Bin Packing)
• Assumes that vehicles can be allocated to lanes that they 

fit within

• A fast IP formulation is used to enumerate all possible 
vehicles mixes
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Pareto front of vehicle mixes

Vehicle type 1

Vehicle type 2

Capacity envelope=states

Pareto front

(0,5)

(1,4)

(3,3)

(5,2)

(7,1)
(8,0)

Vehicle type 2 > vehicle type 1



Loading Simulator
• Simulates the vehicle ferry loading process for a known set vehicles

• 2D packing problem on the main deck, as not all vehicle types fit within the lanes

• Sequential weighted sum loading algorithm for placing vehicles (simulated 
annealing is used to tune the weights to increase packing efficiency)

• Real world constraints:

– Manoeuvrability; lift access; mezzanine decks; drop trailers which are towed onto 
the ferry, parking gaps and also reverse gaps

• Purpose:

– Map vehicle mix states to lower dimensional remaining space states

– Generate efficient 2D packing solutions

– Prevent overselling (assuming 100% show rate)
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Mapping a vehicle mix state to a remaining space state
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Available parking 
positions

Remaining area which is 
used to map vehicle mix 
state to remaining space 
state
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Simulation based approach state transition functions
• Transition functions specify the average amount of area used by each 

vehicle type including area lost due to staggered parking (parking loss)

• Transition functions are derived from the transitions that occur in a large 
sample of simulated vehicle loads

• The loading efficiency of each simulated vehicle load maximised via a 
simulated annealing algorithm 
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Approximating the value function (Simulation based approach)

• The remaining space is continuous but 
we solve the value function for a 
discrete set of remaining space 
states

• Transitions from the discrete states 
lead to intermediate states

• The values of intermediate states are 
interpolated from the values of 
neighbouring states

17௧ܸ ݏ ൌ ܿ ݊݅ݐ݈ܽݎ݁ݐ݊݅	ݎ݈ܽ݁݊݅  1 െ ܿ ݊݅ݐ݈ܽݎ݁ݐ݊݅	݀݁ݏܾܽ	ݐ݊݁݅݀ܽݎ݃



Concave structure of value function
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The concave structure of 
the value function is 
exploited to speed up the 
solution time of the 
dynamic program



Value interpolation
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Price acceptance model (for both models)
• Accounts for bell shaped WTP distribution and monotonic time effects

• ߙ , ݐ ൌ ݂ܿ 1 െ ଵ
ଵାషೖ 

ಾೌೣି
ൈ ܽ  ܾ െ ܽ 1 െ ௧

்



• ݂ܿ ൌ ଵ

ଵି భ
భశೖ·

Parameter Interpretation
a The probability of price acceptance at the beginning of the selling season at 

price 0

b The probability of price acceptance at the end of the selling season at price 0

c Curvature of the effect of time on the probability of price acceptance

k Steepness of the midpoint of the sigmoidal price part of the function

m Relative position of the midpoint of the sigmoidal part of the function

pMax Maximum price a random customer will pay

(Price component) (Time component)





Experiments
• Exact

– The impact of 

• Simulation based

– 13 vehicle types, real ferry design with a car deck and a main deck with up to 
2 mezzanine decks, ݔܽܯሺ݅ሻ ∝  , 3 deck configurations, 3 demandܽ݁ݎܽ
scenarios ߣ௧,

• Exact versus Simulation based

– Simulation based approach implemented with 1D and 2D packing 
approaches in the Exact test instances
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Experiments
• Exact

– 5 vehicle types, 3 lane types, ݔܽܯሺ݅ሻ ∝ , T=1000݄ݐ݈݃݊݁

• Simulation based

– 13 vehicle types, real ferry design with a car deck and a main deck with up to 
2 mezzanine decks, ݔܽܯሺ݅ሻ ∝  , 3 deck configurations, 3 demandܽ݁ݎܽ
scenarios ߣ௧,

• Exact versus Simulation based

– Simulation based approach implemented with 1D and 2D packing 
approaches in the Exact test instances
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Exact Experiment Parameters

Vehicle type Arrival rate Max price 
(SQRT(L))

Length Width Height

1 0.4 1.732051 3 1.6 1.5

2 0.2 2.236068 5 2.3 1.5

3 0.15 2.645751 7 2.4 2.5

4 0.1 3 9 2.9 3

5 0.05 3.316625 11 3.4 4

The customers

Lane type quantity Length Width Height

1 2 37.04 2.34 5

2 2 37.04 2.93 5

3 2 37.04 3.42 5

The ferry



The interaction between packing and pricing
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• X-axis: vehicle mix state sorted by total length of 
vehicles

• Y-axis: Total expected revenue

• Interpretation: future profit does not strictly 
monotonically increase with remaining lane space

• This is due to packing effects:

– Some vehicle mixes lead to unusable gaps at 
the ends of lanes

– Our framework will increase the price of sales 
that lead to such bad states



Vehicle type discretisation
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To reduce the dimensionality of the problem when using the Exact approach vehicles can be 
mapped to fewer categories

1-3-5 discretisation

݁ݐܽݐݏ ൌ 4,3,2,1,1 ݁ݐܽݐݏ ൌ 4,5,2

(Modelled as)

1 2 3 4 5 1 3 5



Vehicle type discretisation results

Vehicle type Discretisation schemes

2 vehicle categories 3 vehicle categories

a b c d a b c d e f

1 (3m) (λ=0.4) 3 3 3 3

2 (5m) (λ=0.2) 5 5 5 5

3 (7m) (λ=0.15) 7 7 7 7

4 (9m) (λ=0.1) 9 9 9 9

5 (11m) (λ=0.05) 11 11 11 11 11 11 11 11 11 11

Expected revenue 73.97 58.97 36.34 32.54 78.13 76.14 74.37 62.20 60.17 38.30

• Modelling small vehicle types with high arrival rates in detail is essential for maximising revenue
• Use as many groups of vehicles as possible (but tractability becomes a problem)
• 2 vehicle types 93%, 3 vehicle types 98%, 4 vehicle types 99%: of the optimal revenue without 

discretisation 



Simulation based approach test instance scenarios
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High car demand
2 Mezzanine decks

Medium demand
1 Mezzanine deck

High freight demand
0 Mezzanine decks



Fixed vs flexible deck configuration average revenues 
Mezzanine decks 0 (fixed) 1 (fixed) 2 (fixed) Flexible

High car demand 68.80 70.95 71.12 71.61
Medium demand 68.36 69.24 66.10 67.73
High freight demand 66.56 60.77 46.73 66.58
Ave DP solution 
time (seconds) 16.05 189.87 129.66
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• Identifies the best fixed deck configurations for each demand scenario
• Flexible pricing strategy is not always best
• The dynamic program can be solved very rapidly
• Choosing the best deck configuration improves revenues by an average of 17%



Benefit of 2-d vehicle packing (no lanes)

discretizations
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Comparison of average revenue results for the exact and simulation based models for
various vehicle type discretization schemes

2 vehicle types 3 vehicle types 4 vehicle types 5 vehicle types

exact
exact expected revenue
1-d bin packing simheuristic
2-d packing heuristic simheuristic
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• 1-D Simheuristic: -2.52% revenue
• 2-D Simheuristic:+31.72% revenue



Future work
• Integrate dynamic pricing with CLV considerations

• Investigate the long term impact of optimal dynamic pricing policies

• Commercial partners are interested in their price acceptance model. The 
challenge is that their data is capacity constrained and click data is unreliable

• Investigate the impact of bottle necks in the loading procedure on packing 
feasibility
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Conclusion
• The general framework for integrating packing and pricing was introduced and the main 

challenges involved were highlighted

• Two alternative approach—exact and simulation based—were presented

• Insights:

– Revenue-to-go is not necessarily monotonically increasing in total remaining lane length

– Careful vehicle type discretisation significantly improves revenues, small high demand 
vehicle types should be modelled in as much detail as possible

• Results

– Finding the best deck configuration increases revenue by 17% on average

– Simulation based approach achieve 97.48% of optimal revenue

– Considering 2D packing increases revenues by an average of 31.72%
32



Simulation approach overview
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Integer programming 1-D bin packing formulation (Exact)

Set of lane types 
(bins)

݆ ∈ ܬ

Set of vehicle 
types

݅ ∈ ܫ

Ferry

መ݈

݈

݀ ൌ ଵ,ଵݕ1,1,1,1,1 ൌ 1 ଶ,ଵݕ ൌ 1 ଷ,ଵݕ ൌ 0

ଵ,ଵ,ଵݔ ൌ 1

ଶ,ଵ,ଵݔ ൌ 1

ଷ,ଶ,ଵݔ ൌ 1

ସ,ଶ,ଵݔ ൌ 1

ହ,ଶ,ଵݔ ൌ 1



2D Packing on the main deck
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Simulation Heuristic Experiment Parameters
Dimensions (metres) Demand scenario arrival rates rate of lift  parking gags 

Vehicle type Length  Width  Height  1. High car  2. Medium  3. High freight  requirement  longitudinal  side

Car     4.326 1.871 1.5 0.88264 0.82058 0.67272 0.1 0.557 0.314

Van     6.132 2.182 2.3 0.02655 0.02468 0.02023 0 0.505 0.159

Minibus 6 2.185 2.5 0.02106 0.01958 0.01605 0.01 0.505 0.158

Caravan 11.025 2.35 2.5 0.01958 0.01821 0.01493 0.02 0.765 0.075

Other towed     8.86 1.8 2.9 0.0003 0.00701 0.02299 0 0.54 0.35

Motorcycles     0.5 1.8 1.1 0.04421 0.0411 0.0337 0 0.557 0.35

Coaches 12.064 2.633 3 0.00017 0.00395 0.01294 0.5 0.85 0

Freight medium  8.109 2.252 3.2 0.00155 0.03576 0.11728 0 0.56 0.124

Freight large   16.093 2.57 4.6 0.00082 0.01876 0.06152 0 0.463 0

Drop trailer    13.75 2.57 4 0.00034 0.00778 0.02553 0 0.463 0
Unaccompanied 
car       4.326 1.871 1.5 0.00061 0.00057 0.00047 0 0.557 0.314

Parcel cage     3 1.5 1.5 0.00083 0.00077 0.00063 0 0.557 0.5

Miscellaneous   7.957 2.024 2.55 0.00134 0.00124 0.00102 0 0.573 0.238
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Flexible configuration pricing policy decision frequencies
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The effect of packing consideration on pricing
• Value of the total remaining lane length is not monotonic (Graph 1)

• Careful discretisation of vehicle types is important (Table 1)

• In case study example optimal deck configurations are identified for different 
demand scenarios

• Dynamic deck configuration policies have their merits

• Simulation approach attains close to optimal revenue for in the 1-d bin packing 
model whilst remaining tractable for larger and more complex problem instances
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Comparison of methods
Exact Criteria Simulation

Dynamic programming Pricing model Approximate dynamic programming

1-d bin packing (lane parking) Packing model 2-d packing heuristic

Number of vehicles of each type State definition The remaining area in each distinct deck 
region (2 or 3 dimensions for a real world case 
study)

Yes Optimality guaranteed No (but close to)

1 day Solution time 10 minutes

5 vehicle types Max problem size 13 vehicle types handled easily

Lane parking with parking gaps 
included in allocated space also 
captures height restrictions

Real world constraints Lift requirements, parking gaps, lowerable
mezzanine deck height restriction, position 
reachability, drop trailer positions, large 
vehicle manoeuvrability

Packing modelled exactly in 
dynamic pricing and selling season

General Approximates packing in dynamic pricing but 
exactly in the selling season 39


